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EIGENVALUES OF THE LAPLACE OPERATOR WITH NONLINEAR
BOUNDARY CONDITIONS

Mihai Mihăilescu and Gheorghe Moroşanu*

Abstract. An eigenvalue problem on a bounded domain for the Laplacian
with a nonlinear Robin-like boundary condition is investigated. We prove the
existence, isolation and simplicity of the first two eigenvalues.

1. INTRODUCTION

Assume Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω. We consider

the following class of eigenvalue problems

(1)

{ −∆u = λu in Ω,

−∂u

∂ν
∈ β(u) on ∂Ω ,

where λ ∈ R, β : D(β) ⊂ R → R is a maximal monotone mapping, and ∂u/∂ν
denotes the outward normal derivative of u. To our knowledge, such problems
have not been much discussed so far in the literature. On the other hand, it is
worth pointing out that eigenvalue problems are always important, particularly in
analyzing more complicated equations. We just remember the recent advances in
[1, 2, 4, 7, 9-14].

In this paper we consider a particular nonlinearity, β(r) = αr+, where α is
a positive constant, and r+ := max{r, 0} for all r ∈ R. Therefore, problem (1)
becomes

(2)

{ −∆u = λu in Ω,

−∂u

∂ν
= αu+ on ∂Ω .
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The natural space for nonlinear eigenvalue problems of the type (1) is the
Sobolev space H1(Ω). Recall that if u ∈ H1(Ω) then u+, u− ∈ H1(Ω) and

∇u+ =

{
0, if [u ≤ 0]

∇u, if [u > 0] ,
∇u− =

{
0, if [u ≥ 0]

∇u, if [u < 0] ,

(see, e.g. [6, Theorem 7.6]), where u±(x) = max{±u(x), 0} for a.e. x ∈ Ω.
We will say that λ ∈ R is an eigenvalue of problem (2) if there exists u ∈

H1(Ω) \ {0} such that

(3)
∫

Ω
∇u∇ϕ dx + α

∫
∂Ω

u+ϕ dσ(x) = λ

∫
Ω

uϕ dx ,

for any ϕ ∈ H1(Ω). Such a function u will be called an eigenfunction corresponding
to the eigenvalue λ. In fact, u is more regular. Indeed, it is known (see [3,
Proposition 2.9, p. 63]) that A = −∆ with D(A) = {u ∈ H 2(Ω); −∂u/∂ν ∈
β(u) a.a. x ∈ ∂Ω} is a maximal (cyclically) monotone operator in L2(Ω), and
moreover there exist some constants C1, C2 > 0 such that

‖v‖H2(Ω) ≤ C1‖v − ∆v‖L2(Ω) + C2, ∀v ∈ D(A).

Therefore, if u is an eigenfunction of problem (2) corresponding to some λ, then
it is easy to see that the (unique) solution of the equation v + Av = f , where
f = (1 + λ)u, is v = u, thus u ∈ H 2(Ω), and

(4) ‖u‖H2(Ω) ≤ C1|1 + λ| · ‖u‖L2(Ω) + C2.

Note that u satisfies problem (2) in a classical sense.
Define

(5) λ1 = inf
v∈H1(Ω)\{0},

∫
Ω v dx≥0

∫
Ω
|∇v|2 dx + α

∫
∂Ω

v2
+ dσ(x)∫

Ω
v2 dx

.

The main result of this paper is given by the following theorem.

Theorem 1. The numbers λ0 = 0 and λ1 (defined by relation (5)) represent the
first two eigenvalues of problem (2), provided that α > 0 is small. They are isolated
in the set of eigenvalues of problem (2). Moreover, the sets of eigenfunctions
corresponding to λ0 and λ1 are positive cones (more precisely, one-dimensional
half-spaces) in H 1(Ω) .
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The study of problem (2) is motivated by many applications. It is worth pointing
out that we obtain in the next section a Rayleigh type principle: for α > 0 small the
first nontrivial eigenvalue λ1 is a minimum value of the Rayleigh quotient associated
with the corresponding classical Robin problem.

2. PROOF OF THE MAIN RESULT

Lemma 1. No λ < 0 can be an eigenvalue of problem (2).

Proof. Assume λ ∈ R is an eigenvalue of problem (2) with the corresponding
eigenfunction u ∈ H1(Ω) \ {0}. Taking ϕ = u in (3) we find

λ =

∫
Ω

|∇u|2 dx + α

∫
∂Ω

u2
+ dσ(x)∫

Ω
u2 dx

≥ 0 .

Lemma 2. λ0 = 0 is an eigenvalue of problem (2) and the set of its corre-
sponding eigenfunctions is given by all the negative real constants.

Proof. The first part of the lemma is obvious. Let us now consider u ∈ H 1(Ω)\
{0} an eigenfunction corresponding to λ0. Taking ϕ = u in relation (3) we deduce
that ∫

Ω
|∇u|2 dx + α

∫
∂Ω

u2
+ dσ(x) = 0 .

Therefore,
∫
Ω |∇u|2 dx =

∫
∂Ω u2

+ dσ(x) = 0. Consequently, u should be a negative
real number.

Lemma 3. λ0 is isolated in the set of eigenvalues of problem (2).

Proof. Assume by contradiction that λ0 is not isolated. Then there exists a
sequence of positive eigenvalues of problem (2), say (λn), such that λn ↘ 0. For
each n we denote by un the corresponding eigenfunction of λn. Since we deal with
a homogeneous problem we can assume that for each n we have ‖un‖L2(Ω) = 1.
Relation (3) implies that for each n we have

(6)
∫

Ω
∇un∇ϕ dx + α

∫
∂Ω

(un)+ϕ dσ(x) = λn

∫
Ω

unϕ dx ,

for any ϕ ∈ H1(Ω). Taking ϕ = un in relation (6) we find

(7)
∫

Ω
|∇un|2 dx + α

∫
∂Ω

(un)2+ dσ(x) = λn

∫
Ω

u2
n dx = λn .
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We deduce that (un) is bounded in H 1(Ω). In fact, by estimate (4) with λ = λn

and u := un, it follows that (un) is bounded in H 2(Ω). Consequently, there exists
u ∈ H2(Ω) such that, on a subsequence, un converges strongly to u in H1(Ω) and
in L2(∂Ω) as well. Furthermore, (un)+ converges strongly to u+ in L2(∂Ω).

The above pieces of information lead to∫
Ω
|∇u|2 dx + α

∫
∂Ω

u2
+ dσ(x)

= lim
n→∞

[∫
Ω
|∇un|2 dx + α

∫
∂Ω

(un)2+ dσ(x)
]

= lim
n→∞ λn = 0 .

Thus,
∫
Ω |∇u|2 dx = 0 and

∫
∂Ω u2

+ dσ(x) = 0. It follows that u is a negative
constant satisfying ‖u‖L2(Ω) = 1. More precisely, u = −1/|Ω|1/2.

Turning back, relation (6) with ϕ = u implies

λn

∫
Ω

unu dx = −α
1

|Ω|1/2

∫
∂Ω

(un)+ dσ(x) ≤ 0, for all n .

It follows that ∫
Ω

un dx ≥ 0, for all n ,

which implies ∫
Ω

u dx ≥ 0 .

This contradicts the fact that u is a negative constant. Consequently, the result of
Lemma 3 holds true.

Remark 1. Let us assume that λ > 0 is an eigenvalue of problem (2) with the
corresponding eigenfunction u. Taking ϕ ≡ 1 in relation (3) it follows that

α

∫
∂Ω

u+ dσ(x) = λ

∫
Ω

u dx ,

which implies that ∫
Ω

u dx ≥ 0 .

Thus, the nonzero eigenvalues of problem (2) have the corresponding eigenfunctions
in the cone

C =
{

w ∈ H1(Ω);
∫

Ω
w dx ≥ 0

}
.

Consequently, the definition of λ1 given in relation (5) is natural (we will prove
later that for α > 0 small enough λ1 is an eigenvalue of problem (2)).
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Lemma 4. There exists u ∈ C \ {0} such that

λ1 =

∫
Ω
|∇u|2 dx + α

∫
∂Ω

u2
+ dσ(x)∫

Ω

u2 dx
.

Proof. Let (un) ⊂ C \ {0} be a minimizing sequence for λ1, i.e.∫
Ω
|∇un|2 dx + α

∫
∂Ω

(un)2+ dσ(x)∫
Ω

u2
n dx

→ λ1 ,

as n → ∞. We can assume that ‖un‖L2(Ω) = 1 for all n. It follows that un is
bounded in H 1(Ω). Thus, there exists u ∈ H1(Ω) such that (a subsequence of) un

converges weakly to u in H1(Ω) and strongly in L2(Ω) and L2(∂Ω). It follows
that ‖u‖L2(Ω) = 1, i.e. u �= 0, and

∫
Ω u dx ≥ 0. Thus, u ∈ C \ {0}. The above

pieces of information combined with the weak lower semicontinuity of the L2-norm
imply∫

Ω
|∇u|2 dx+α

∫
∂Ω

u2
+ dσ(x) ≤ lim

n→∞

[∫
Ω
|∇un|2 dx + α

∫
∂Ω

(un)2+ dσ(x)
]

= λ1 .

Since ‖u‖L2(Ω) = 1 the above inequality and the definition of λ1 show that the
conclusion of Lemma 4 holds true.

Remark 2. We point out the fact that λ1 > 0. Indeed, assuming by contradiction
that λ1 = 0 then by Lemma 4 there exists u ∈ C \ {0} such that∫

Ω

|∇u|2 dx +
∫

∂Ω

u2
+ dσ(x) = 0 .

It follows that u is a negative constant with
∫
Ω u dx ≥ 0, a contradiction. Conse-

quently 0 = λ0 < λ1. Moreover, it is trivial to see that no λ ∈ (0, λ1) can be an
eigenvalue of problem (2).

In the following we show that for α > 0 small enough λ1 is an eigenvalue of
problem (2). In order to do that we denote for α ∈ (−ε,∞), with ε > 0 small
enough,

λ1(α) = inf
u∈C\{0}

∫
Ω
|∇u|2 dx + α

∫
∂Ω

u2
+ dσ(x)∫

Ω
u2 dx

,
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and

µ1(α) = inf
u∈H1(Ω)\{0},

∫
Ω

u dx=0

∫
Ω
|∇u|2 dx + α

∫
∂Ω

u2
+ dσ(x)∫

Ω
u2 dx

.

It is clear that for all α > 0 we have µ1(α) ≥ λ1(α), but, it is not obvious if either
µ1(α) > λ1(α) or µ1(α) = λ1(α). However, we are able to prove the following
result:

Lemma 5. For any α > 0 small enough we have µ1(α) > λ1(α).

Proof. Obviously, for all α ≥ 0, both λ1(α) and µ1(α) are finite. This property
extends for α ∈ (−ε, 0), with ε > 0, small enough. Indeed, for all u ∈ H1(Ω) with
‖u‖L2(Ω) = 1, we have (by the continuity of the trace operator)∫

∂Ω

u2
+ dσ(x) ≤

∫
∂Ω

u2 dσ(x) ≤ C

(∫
Ω

|∇u|2 dx + 1
)

,

where C is a positive constant. Therefore,∫
Ω
|∇u|2 dx + α

∫
∂Ω

u2
+ dσ(x) ≥ (1 + αC)

∫
Ω
|∇u|2 dx + αC ≥ −εC ,

for all α ∈ (−ε, 0), u ∈ H1(Ω) with ‖u‖L2(Ω) = 1, provided that ε > 0 satisfies
1− εC ≥ 0. Thus, both λ1(α) and µ1(α) are well defined for α ∈ (−ε,∞). (Even
more, a similar proof as the one used in Lemma 4 shows that both λ1(α) and µ1(α)
are attained.)

Now, let us point out the fact that the functions λ1(α), µ1(α) : (−ε,∞) → R

are concave functions. Clearly, for any ϕ ∈ C \ {0} the function

(−ε,∞) 
 α −→

∫
Ω
|∇ϕ|2 dx + α

∫
∂Ω

ϕ2
+ dσ(x)∫

Ω
ϕ2 dx

,

is an affine function, consequently, a concave function. Since the infimum of a
family of concave functions is a concave function, it follows that λ1(α) is concave.
Similarly, µ1(α) is also concave. Thus, we deduce that λ1(α) and µ1(α) are
continuous functions for α ∈ (−ε,∞). On the other hand, λ1(0) = 0 and µ1(0) =
λ1,N , where 0 and λ1,N are the first two eigenvalues of the Neumann problem (see,
e.g. [5, Chapter 4.2.1]), i.e.

(8)

{ −∆u = λu in Ω,
∂u

∂ν
= 0 on ∂Ω .
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It is well-known that λ1,N > 0 (see, [5, Proposition 4.2.2 and Proposition 4.2.3]).
Thus, we found λ1(0) < µ1(0). This inequality and the fact that λ1(α) and µ1(α)
are continuous functions for α ∈ (−ε,∞) imply that λ1(α) < µ1(α) for any α > 0,
small enough. The proof of Lemma 5 is complete.

Lemma 6. Assume that u ∈ C \ {0} is a minimizer for the infimum given by
relation (5), with

∫
Ω u dx > 0. Then λ1 is an eigenvalue of problem (2) and u is

an eigenfunction corresponding to λ 1.

Proof. Let ϕ ∈ H 1(Ω) be fixed. Then for any ε lying in a small neighborhood
of the origin, we have

∫
Ω(u + εϕ) dx > 0, i.e. u + εϕ ∈ C. Define the function

f(ε) =

∫
Ω
|∇(u + εϕ)|2 dx + α

∫
∂Ω

(u + εϕ)2+ dσ(x)∫
Ω
(u + εϕ)2 dx

.

Clearly, f is well defined in a small neighborhood of the origin and possesses a
minimum in ε = 0. Consequently,

f
′
(0) = 0 ,

or, by some simple computations,∫
Ω

∇u∇ϕ dx + α

∫
∂Ω

u+ϕ dσ(x) = λ1

∫
Ω

uϕ dx .

Clearly the above equality holds true for any ϕ ∈ H1(Ω). We deduce that u is
an eigenfunction corresponding to the eigenvalue λ1, and the proof of Lemma 6 is
complete.

Proposition 1. The number λ1, defined by relation (5), is an eigenvalue of
problem (2), provided that α > 0 is small enough.

Proof. The conclusion of Proposition 1 is a simple consequence of Lemmas 4,
5 and 6.

Lemma 7. If λ1 is an eigenvalue of problem (2) and u ∈ H 1(Ω) \ {0} is an
eigenfunction corresponding to λ 1, then u ≥ 0 in Ω (thus,

∫
Ω u dx > 0).

Proof. Relation (3) shows that

(9)
∫

Ω
∇u∇ϕ dx + α

∫
∂Ω

u+ϕ dσ(x) = λ1

∫
Ω

uϕ dx ,

for every ϕ ∈ H1(Ω). First, we claim that u+ �= 0. Indeed, assuming the contrary,
we deduce that
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(10)
∫

Ω
∇u−∇ϕ dx = λ1

∫
Ω

u−ϕ dx ,

for every ϕ ∈ H1(Ω). Taking ϕ = 1 we find∫
Ω

u− dx = 0 ,

that means, u− = 0 and thus u = 0, a contradiction. Consequently, u+ �= 0. Then,
taking ϕ = u+ in (9) we have

λ1 =

∫
Ω
|∇u+|2 dx + α

∫
∂Ω

u2
+ dσ(x)∫

Ω
u2

+ dx

.

By Lemma 6 we infer that u+ is an eigenfunction corresponding to λ1, or

(11)
∫

Ω
∇u+∇ϕ dx + α

∫
∂Ω

u+ϕ dσ(x) = λ1

∫
Ω

u+ϕ dx ,

for every ϕ ∈ H1(Ω). Relations (9) and (11) imply that relation (10) holds true.
Taking again ϕ = 1 in (10) we find again

∫
Ω u− dx = 0 which leads to u− = 0 in

Ω. The proof of Lemma 7 is complete.

Remark 3. By Lemma 7, if λ1 is an eigenvalue of problem (2), then it is the
first eigenvalue of the following Robin problem

(12)

{ −∆u = λu in Ω,

−∂u

∂ν
= αu on ∂Ω .

In the following we argue that fact in detail. It is well-known that the number

γ1 = inf
v∈H1(Ω)\{0}

∫
Ω

|∇v|2 dx + α

∫
∂Ω

v2 dσ(x)∫
Ω

v2 dx

,

known as the Rayleigh quotient, is positive and represents the first eigenvalue of
problem (12). Moreover, γ1 is simple, that means, all the associated eigenfunctions
are merely multiples of each other. It is also known that these eigenfunctions
belong to C(Ω) ∩ C1(Ω) (see [4, Lemma 2.1]). Furthermore, an eigenfunction
of γ1 can be chosen with a single sign, particularly with positive sign (see, e.g.
[7]). The definitions of γ1 and λ1 show that γ1 ≥ λ1. Actually, by Lemma 7 we
have λ1 = γ1, i.e. λ1 is the first eigenvalue of problem (12). Thus, the set of
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eigenfunctions corresponding to λ1 is a positive cone in H1(Ω). More precisely, if
u is a positive eigenfunction for the Robin problem, associated with γ1, then the set
of eigenfunctions for problem (2), associated with λ1 (= γ1), is the one dimensional
half-space {tu; t > 0}. Hence λ1 is simple.

Finally, we focus our attention on proving that λ1 is isolated. We will use a
technique borrowed from [2] that will be described in the following.

Lemma 8. Assume λ > 0 is an eigenvalue of problem (2) and u ∈ H 1(Ω)\{0}
is an eigenfunction corresponding to λ. Define Ω − = {x ∈ Ω; u(x) < 0}. If
|Ω−| > 0 then there exists a positive constant C (independent of λ and u) such that

((λ + 1)C)−N/2 ≤ |Ω−| .

Proof. Recalling again relation (3) we have∫
Ω
∇u∇ϕ dx + α

∫
∂Ω

u+ϕ dσ(x) = λ

∫
Ω

uϕ dx ,

for every ϕ ∈ H1(Ω). Taking ϕ = u− we find∫
Ω

|∇u−|2 dx = λ

∫
Ω

u2
− dx ,

or by taking into account that L2�
(Ω) is continuously embedded in L2(Ω), where

2� = 2N/(N − 2) is the critical Sobolev exponent, we deduce by the Hölder’s
inequality∫

Ω
|∇u−|2 dx +

∫
Ω

u2
− dx = (λ + 1)

∫
Ω

u2
− dx ≤ (λ + 1)‖u−‖2

Lp�
(Ω)

|Ω−|1−2/2�
.

Next, since H1(Ω) is continuously embedded in L2�
(Ω) we deduce that there exists

a positive constant C such that

‖v‖2
L2�

(Ω)
≤ C

(∫
Ω
|∇v|2 dx +

∫
Ω

v2 dx

)
,

for any v ∈ H1(Ω). The last two inequalities imply

1 ≤ (λ + 1)C|Ω−|2/N .

The proof of Lemma 8 is complete.

Lemma 9. λ1 is isolated in the set of eigenvalues of problem (2).
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Proof. By Remark 2 it is clear that λ1 is isolated from the left. We show that
it is also isolated from the right. Assume by contradiction that this is not the case.
Then there exists a sequence of positive eigenvalues of problem (2), say (λn), such
that λn ↘ λ1. For each n we denote by un an eigenfunction corresponding to λn.
Since we deal with a homogeneous problem we can assume that for each n we have
‖un‖L2(Ω) = 1. Relation (3) implies that for each n we have

(13)
∫

Ω
∇un∇ϕ dx + α

∫
∂Ω

(un)+ϕ dσ(x) = λn

∫
Ω

unϕ dx ,

for any ϕ ∈ H1(Ω). Arguing as in the proof of Lemma 3, we deduce that (un) is
bounded in H 2(Ω). Consequently, there exists u ∈ H2(Ω) such that un converges,
on a subsequence, to u in H1(Ω) and in L2(∂Ω) as well. Furthermore, we also
have (un)+ converges strongly to u+ in L2(∂Ω). Passing to the limit as n → ∞
in (13) we get

(14)
∫

Ω
∇u∇ϕ dx + α

∫
∂Ω

(u)+ϕ dσ(x) = λ1

∫
Ω

uϕ dx ,

for any ϕ ∈ H1(Ω). Since ‖u‖L2(Ω)=1 it follows that u �= 0 and thus, it is an
eigenfunction corresponding to λ1. By Lemma 7 we deduce that u ≥ 0 in Ω. In
fact, according to Remark 3, u ∈ C(Ω) ∩ C1(Ω) and u(x) > 0 for all x ∈ Ω.
Let now ε > 0 be arbitrary but fixed and let K ⊂ Ω be a compact such that
|Ω \ K| < ε/2. Obviously, there exists a δ > 0 (depending on K) such that
u(x) ≥ δ > 0 for every x ∈ K.

On the other hand, it is clear that un converges to u a.e. in Ω and thus, in K .
Consequently, by the Egorov’s Theorem (see, e.g. [15, Th́eorème 2.37]) we deduce
that for ε > 0 fixed above there exists a measurable set ω ⊂ K with |ω| < ε/2
such that un converges uniformly to u on K \ω. Since u ≥ δ > 0 in K we deduce
that for any n large enough we have un ≥ 0 on K \ ω. For each n we define
(Ωn)− = {x ∈ Ω; un(x) < 0}. We can assume that for each n |(Ωn)−| > 0.
Indeed, otherwise there exists a particular n for which we have un ≥ 0 (and un �= 0)
in Ω. Taking ϕ = u in (13) and ϕ = un in (14) we deduce that

λn

∫
Ω

unu dx = λ1

∫
Ω

uun dx .

Since
∫
Ω uun dx > 0 the above equality leads to λn = λ1 which represents a

contradiction with the fact that λn > λ1. Consequently, we have |(Ωn)−| > 0 for
all n. It follows that for any n large enough we have (Ωn)− ⊂ ω ∪ (Ω \K). Using
the above facts and Lemma 8 we have that the following inequalities hold true

((λn + 1)C)−N/2 ≤ |(Ωn)−| ≤ |ω|+ |Ω \ K| < ε ,
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provided that n is large enough. Therefore

((λ1 + 1)C)−N/2 ≤ ε,

for all ε > 0, which is impossible. Consequently, the conclusion of Lemma 9 holds
true.

3. FINAL COMMENTS

In this section we point out some facts that are direct consequences of the
discussion presented in the above sections.

First, we highlight the fact that for any α > 0 the number γ1 = γ1(α), introduced
in Remark 3 and which represents the first eigenvalue of the Robin problem (that is
problem (12)) is an eigenvalue of problem (2). The above assertion is a consequence
of the fact that there exists u ∈ H1(Ω) \ {0} with u ≥ 0 a.e. in Ω such that∫

Ω
∇u∇ϕ dx + α

∫
∂Ω

uϕ dσ(x) = γ1

∫
Ω

uϕ dx ,

for all ϕ ∈ H1(Ω). Since u ≥ 0 a.e. in Ω it follows that actually relation (3) is
verified with λ = γ1. The definitions of λ1(α) and γ1(α) imply that for any α > 0
we have γ1(α) ≥ λ1(α). Moreover, by Remark 3 we know that for α > 0 small
enough we have γ1(α) = λ1(α). However, we cannot conclude that for any α > 0
we have γ1(α) = λ1(α).

Second, we focus our attention on the numbers λ1(α) and µ1(α) defined after
Remark 2. It is clear that for all α > 0 we have µ1(α) ≥ λ1(α). Moreover,
for α > 0 small enough, by Lemma 5, we have that µ1(α) > λ1(α) and λ1(α)
is an eigenvalue of problem (2) (see Lemma 6). On the other hand, nothing is
clear if α > 0 is far from the origin. At least theoretically it may happen that for
some α > 0 large µ1(α) = λ1(α). In that case the reasoning from Lemma 6 does
not work and consequently we cannot state whether λ1(α) is an eigenvalue or not.
However, we can show the following result which is undoubtedly connected with
the above discussion:

Proposition 2. If there exists α > 0 for which any minimizer u ∈ C \ {0} of
λ1(α) satisfies

∫
Ω u dx = 0 then λ1(α) is not an eigenvalue of problem (2).

Proof. Assume, by contradiction, that λ1(α) is an eigenvalue of problem (2).
Then, any eigenfunction u corresponding to λ1(α) is a minimizer with

∫
Ω u dx = 0.

On the other hand, by Lemma 7 we have
∫
Ω u dx > 0, a contradiction. The proof

of Proposition 2 is complete.

Define
V = {u ∈ H1(Ω);

∫
Ω

u dx = 0} .
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Clearly, H1(Ω) = V ⊕ R and V ⊂ C. It seems that for some α > 0 large λ1(α) is
attained on V , i.e., λ1(α) = µ1(α). In this case, by Proposition 2, λ1(α) is not an
eigenvalue of problem (2). Since in general λ1 ≤ γ1, we would have in this case
λ1(α) < γ1(α).

A similar proof as the one of Lemma 4 shows that for each α > 0 there exists
vα ∈ V \ {0} a minimizer of µ1(α). Moreover, as in Lemma 6 it can be proved
that for vα given above we have

(15)
∫

Ω
∇vα∇ϕ dx + α

∫
∂Ω

(vα)+ϕ dσ(x) = µ1(α)
∫

Ω
vαϕ dx ,

for all ϕ ∈ V . However, the above relation is not enough to state that µ1(α) is an
eigenvalue of problem (2) in the sense of the definition given by relation (3).

In connection with the above discussion, let us introduce the following definition:
we say that λ > 0 is an extended eigenvalue of problem (2) if there exists u ∈ C\{0}
such that

(16)
∫

Ω
∇u∇(ϕ− u) dx + α

∫
∂Ω

u+(ϕ − u) dσ(x) ≥ λ

∫
Ω

u(ϕ − u) dx ,

for all ϕ ∈ C. It is obvious that the classical eigenvalues of problem (2) (given by
relation (3)) are also extended eigenvalues. On the other hand, it is also clear that
µ1(α) is an extended eigenvalue of problem (2), for any α > 0. Thus, relation (16)
gives a connection between λ1(α) and µ1(α). In fact, if u ∈ C \ {0} is an extended
eigenfunction corresponding to some extended eigenvalue λ > 0 of problem (2),
then either u is an interior point of C (i.e., u = u1 + c, for some u1 ∈ V and c > 0)
so that λ is a classical eigenvalue, or u ∈ V \ {0} and v = u satisfies (15).

It is also worth pointing out the fact that since problem (2) has a nonlinear
boundary condition, the study of the existence of other eigenvalues (different from λ0

and λ1(α)) is more difficult than in the case of problems involving linear boundary
conditions. Methods which are usually used fail in this case. In this context, we just
notice that we cannot apply the Ljusternik-Schnirelman theory in this case, since
the Euler-Lagrange energetic functional associated with problem (2) is not even, a
crucial condition required by the application of the quoted method. However, in the
1-dimensional case the existence of infinitely many eigenvalues can be easily stated.
Note that problem (2) with Ω = (0, 1) becomes

(17)

{ −u
′′
(t) = λu(t) for t ∈ (0, 1) ,

u
′
(0) = αu+(0), −u

′
(1) = αu+(1) .

On the other hand, it is known (see, e.g., [8, p. 10]) that the 1-dimensional Neumann
problem

(18)

{ −u
′′
(t) = λu(t) for t ∈ (0, 1) ,

u
′
(0) = u

′
(1) = 0 ,
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has the eigenvalues µk = k2π2, k = 0, 1, ..., with the corresponding eigenfunctions
uk(t) = − cos(kπt). Simple computations show that for each k ∈ Z+, µ2k is an
eigenvalue of problem (17) with the corresponding eigenfunction u2k.

Finally, let us point out that all the discussion on problem (2) presented in this
paper can be extended (by using similar arguments) to the nonlinear eigenvalue
problem 


−∆pu = λ|u|p−2u in Ω,

−|∇u|p−2 ∂u

∂ν
= αup−1

+ on ∂Ω ,

where p ∈ (1, N ) is a real number and ∆p· = div(|∇ · |p−2∇·) stands for the
p-Laplace operator.
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