Methodology

An Empirical Comparison of Seven Populist Attitudes Scales

Bruno Castanho Silva1, Sebastian Jungkunz2, Marc Helbling2, and Levente Littvay3

Abstract
With the recent upsurge of populism in developed and transition democracies, researchers have started measuring it as an attitude. Several scales have been proposed for this purpose. However, there is little direct comparison between the available alternatives. Scholars who wish to measure populist attitudes have little information available to help select the best scale for their purposes. In this article, we directly compare seven populist attitudes scales from multiple perspectives: conceptual development, questionnaire design, dimensionality, information, cross-national validity, and external validity. We use original survey data collected online from nine countries in Europe and the Americas, with around 250 participants per country, in which all seven batteries of questions were present. Results show that most scales have important methodological and validity limitations in at least one of the dimensions tested, and should not be used for cross-national comparative research. We recommend populist attitudes items that work better at capturing populism, and more generally provide guidelines for researchers who want to compare different scales that supposedly measure the same construct.

Keywords
measurement, populism, structural equation modeling, scale development, psychometric properties

Introduction
Social scientists doing survey research have never had as much data. Besides well-established cross-national surveys, every week specific surveys are fielded to study various topics. Two consequences have been the following: (1) survey and questionnaire design become fundamental for an ever growing number of scholars, and (2) a proliferation of different ways to measure similar concepts. Examples include authoritarian attitudes (Altemeyer 1981; Feldman and Stenner 1997; Oesterreich 2005), ideology (e.g., Lo, Proksch, and Gschwend 2014; Wilson and Patterson 1968), or political trust (Feldman 1983; Levi and Stoker 2000; Marien 2011).

It is often difficult for researchers to decide which questions, among suggested alternatives, would be better to measure a concept. With the rapid expansion of populism studies, multiple scholars tried measuring populist attitudes among individuals, all in different ways. So far, researchers had little empirical evidence to guide their choice for a battery of questions. In this article, we apply several psychometric techniques to seven scales measuring populist attitudes: Akkerman, Mudde, and Zaslove (2014); Castanho Silva et al. (2018); Elchardus and Spruyt (2016); Oliver and Rahn (2016); Schulz et al. (2018); Stanley (2011); and the module of the wave 5 questionnaire of the Comparative Study of Electoral Systems (CSES; Hobolt et al. 2016).1 We collected original survey data in nine European and American countries, including all batteries of questions in all samples. We analyze questionnaire design, perform tests with factor analysis and Item Response Theory (IRT), and evaluate external validity. At the end, we suggest how scholars can make an informed decision as to what scales perform better in each aspect, and how that can be expanded beyond populist attitudes studies.2

Populist Attitudes Defined and Measured
Populism is defined almost identically across all studies building on Mudde (2004): a thin-centered ideology according to which society is divided into two homogeneous and antagonistic groups: the “good people” and the

1University of Cologne, Germany
2University of Bamberg, Germany
3Central European University, Budapest, Hungary

Corresponding Author:
Bruno Castanho Silva, University of Cologne, Herbert-Lewin Str. 2, 50931 Köln, Germany.
Email: bcsilva@wiso.uni-koeln.de
“corrupt elites.” Ordinary people are always morally better than the elite, who illegitimately capture and maintain power, betraying people’s interests (Hawkins 2009; Mudde and Rovira Kaltwasser 2013). Broadly, this is the concept all scales try capturing, with the partial exception of Oliver and Rahn (2016), which adds nationalism.

The most important aspect measured in these projects concerns the role ordinary people play in politics and society: the “will of the people” is the highest principle in a country and needs to be fully implemented into politics (Canovan 1981, 1999). The people should be in charge of important decisions and cannot be well represented by politicians. All studies include items representing popular sovereignty, the duties of elected politicians toward their electorate, and questions of representative democracy. Another crucial aspect concerns the idea that populists are against anyone who does not belong to the group of “ordinary people.” These others form an “elite.” It is not always clear how it is delimited (Jagers and Walgrave 2007, 324), but for most populists, it is the political establishment. Every measure under study here includes items on attitudes toward politicians, members of parliament, and the government.

Operationalization and Dimensionality

Populism is a multidimensional concept, so there are two possible approaches to question design. The first is drafting specific items to capture each dimension separately—for example, if praise of common people is a dimension, an item should tap exclusively into that without references to the elite. This approach is followed by Castanho Silva et al. (2018), Oliver and Rahn (2016), Schulz et al. (2018), and Stanley (2011). The second option is capturing all dimensions simultaneously in a single scale, including single items that refer to two or three dimensions in themselves. That is seen in Akkerman, Mudde, and Zaslove (2014); Elchardus and Spruyt (2016); and the CSES.3

With the exception of Elchardus and Spruyt (2016), all projects differentiate between three different subcomponents, which cover similar dimensions and can be subsumed under the terms of people-centrism, anti-elitism, and anti-pluralism. Oliver and Rahn (2016), for example, have the dimension “mistrust of experts” besides “anti-elitism,” including several questions on the role ordinary people play in society. There, the common sense knowledge of ordinary folk is played up as superior to experts’ ideas, which is one way that populists praise common people. Anti-pluralist attitudes are sometimes measured by focusing on the importance of one’s own national group (Oliver and Rahn 2016) or by simply dividing people into good and evil (Castanho Silva et al. 2018).

To capture people-centrism, two scales directly refer to the “will of the people” (Akkerman, Mudde, and Zaslove 2014; Castanho Silva et al. 2018). Others have statements on direct democracy and popular sovereignty, claiming that the people should be consulted for important policy and political decisions (Akkerman, Mudde, and Zaslove 2014; Hobolt et al. 2016; Schulz et al. 2018). There are also items glorying the “honest” and “hardworking” character of ordinary folk, as well as its common sense wisdom (Elchardus and Spruyt 2016; Oliver and Rahn 2016; Schulz et al. 2018; Stanley 2011). Some scales focus on the political aspects of people-centrism—popular sovereignty in politics (Akkerman, Mudde, and Zaslove 2014; Castanho Silva et al. 2018; Hobolt et al. 2016)—while others give more weight to the romanticization of ordinary people and common sense in general (Elchardus and Spruyt 2016; Oliver and Rahn 2016). Two scales combine both aspects (Schulz et al. 2018; Stanley 2011).

When it comes to anti-elitism, all have a strong focus on government and elected politicians. This brings trouble when applied to countries where populists are in power. Most scales were first tested in countries where the government was not populist and, therefore, the anti-government items worked fine for capturing anti-elitist views. The increase in the number of populist governments in Western democracies today makes it necessary to rethink the connection between theoretical anti-elitism and its operationalization (Enyedi 2016).

Nonetheless, some include other elite groups, for instance “experts,” “academics,” or “intellectuals” (Elchardus and Spruyt 2016; Oliver and Rahn 2016). These are a common target for right-wing populists. However, if we think of some cases where left-populists are heavily popular among, and inspired by, well-educated individuals—Podemos in Spain being a case in point—then these terms will hardly determine a credible elite for populist supporters. Broader concepts are also used, such as “interest groups” (Akkerman, Mudde, and Zaslove 2014), “the system” and “the powerful” (Oliver and Rahn 2016), or “the big interests” (Castanho Silva et al. 2018). Ultimately, these might be more generalizable across different types and contexts of populism to capture the essence of anti-elitist feelings beyond anti-government expressions.

Importantly, all scales measure populism independent of the so-called “host ideology,” that is, they do not try to capture specifically right- or left-wing populism. Theoretically, this follows the definition laid out above of populism as a thin-centered ideology that can be attached to various thick-centered ones. Empirically, populist attitudes are not necessarily correlated with the left or right across countries, and they have explanatory power beyond ideology on vote-choice models (for
example, Rico and Anduiza 2017; Spruyt, Keppens, and van Droogenbroeck 2016; Van Hauwaert and van Kessel 2018).

While all studies agree on the basic definition of populism, and most agree on its three subcomponents, it rarely becomes clear how the respective dimensions and attributes are logically organized and delimited from each other (Munck and Verkuilen 2002, 9–10). Providing one or several dimensions of populism reflects the different ideas of the concept. As such, it is either assumed as a prerequisite for respondents to score high on all dimensions simultaneously to speak of populist attitudes or it is possible to study certain dimensions separately. Akkerman, Mudde, and Zaslove (2014), Elchardus and Spruyt (2016), and the CSES use a single dimension, and form an additive index with all questions. Higher values in one dimension compensate lower values in another, so that to reach relatively high levels of populism, an individual still can have little of one of its aspects. Oliver and Rahn (2016) and Stanley (2011) measure and use the dimensions completely separately in all analyses. They investigate how each subcomponent is connected with outcomes of interest.

Schulz et al. (2018) propose a second-order factor analysis, whereby the latent variable “populism” is formed by the covariance between the three latent variables of “anti-elitism,” “homogeneity of the people,” and “popular sovereignty.” This scale takes that the presence of all dimensions is necessary to consider someone populist, and that only the correlation between the three dimensions configures the full concept. Castanho Silva et al. (2018) depart from a similar idea of populism at the intersection of all three dimensions. However, they do not assume that all three dimensions are correlated, which is a necessary assumption for the second-order model of Schulz et al. (2018). Instead, Castanho Silva et al. (2018) propose a multiplicative unified scale, in which an individual’s score in each dimension, normalized and bound between 0 and 1, is multiplied by the others to result in the final level of populism. Therefore, one is only as populist as their lowest score on people-centrism, anti-elitism, or Manichaean outlook. The decision of aggregation method reflects different understandings of the concept and of the interrelations between its dimensions.

Item Selection and Wording

There is almost no overlap of items in these studies, unless scales directly build on each other. Some studies craft a few items based on theory (Stanley 2011, Akkerman, Mudde, and Zaslove 2014; Elchardus and Spruyt 2016), sometimes providing extensive justifications for how their selection is different from other projects (Akkerman, Mudde, and Zaslove 2014, 1329–30; Elchardus and Spruyt 2016, 121–22). Still, most scale development is at least partially empirically driven. Items that do not load strongly on the respective latent variables or principal components are deleted. Schulz et al. (2018) and Castanho Silva et al. (2018) have taken this approach a step further and combined a selection of a large number of items based on theoretical considerations with exploratory analyses that helped them define a small number of core items. Indices also vary in their number of items. While some include between twelve and fifteen (Oliver and Rahn 2016), most range from six to nine (Akkerman, Mudde, and Zaslove 2014; Castanho Silva et al. 2018; Schulz et al. 2018; Stanley 2011; and CSES) or even only four (Elchardus and Spruyt 2016). The number of items is related to the number of dimensions: multidimensional scales include more items than single-dimensional ones. While longer scales may be able to grasp a broader range of the concept, they may also be more prone to poor operationalization if the selection of items is not careful (Elkins 2000; Hayduk and Littvay 2012).

From the perspective of questionnaire design, we also consider the wording of items, framing of indicators, and response options. Questions can be worded positively—higher agreement indicating higher levels of the construct being measured. Conversely, in negative-worded items, higher agreement indicates less presence of the construct. All scales should have a combination of both, to avoid acquiescence bias (McClendon 1991): the tendency of survey respondents to agree with questions presented to them. Without negatively worded items, it is not possible to judge how much individuals agree with the actual content, and how much they are simply saying “yes” by default. In the absence of negative-worded items, average levels of agreement with a construct are overestimated.

Three scales here have no negative-worded items: Akkerman, Mudde, and Zaslove (2014); Elchardus and Spruyt (2016); and Schulz et al. (2018). In Oliver and Rahn (2016), only one subdimension has a negative worded item. Castanho Silva et al. (2018) and Stanley (2011) have negative-worded items for every subdimension. The unidimensional CSES module has a total of seven questions, and one is negatively worded. Regarding response scales, Akkerman, Mudde, and Zaslove (2014); CSES; Elchardus and Spruyt (2016); and Schulz et al. (2018) use Likert-type agree-disagree with five categories; Castanho Silva et al. (2018) and Stanley (2011) use seven-point scales; and Oliver and Rahn (2016) use a mix of two, five, and seven categories for their questions.

Data

Data for this study come from nine online samples. In the United States, it was collected through Amazon’s Mechanical Turk in November 2016, before the general
elections. In Brazil, France, Greece, Ireland, Italy, Mexico, Spain, and the United Kingdom, it was collected through CrowdFlower between December 2016 and March 2017. This platform has started to be used for social scientific studies (e.g., Van Prooijen and Krouwel 2017), and tests with behavioral experiments show that results from studies with field and student samples can be replicated (Peer et al. 2017). The reasoning for case selection was cultural and political diversity: we include Latin and North America, as well as Western and Southern European cases. There are countries with relevant right-wing populist actors (e.g., the United Kingdom, France), left-wing ones (Greece, Spain, Mexico), both (Italy), and those where populist forces were not electorally strong at the time (Brazil, Ireland). This allows us to test whether the scales work in different national contexts where populist support is associated with very different kinds of parties or even with no populist party at all. Moreover, populist preferences have different demographic correlates depending on countries and what their thick ideological attachment is (Rooduijn 2018). Therefore, these samples are also diverse enough that we may expect there to be variance in the levels of populism across them, including individuals who hold both high and low populist attitudes.

Descriptive statistics for all samples is in Table S1 of the online supplementary materials. Online samples have known biases: they are more liberal, younger, and better educated than national populations (Berinsky, Huber, and Lenz 2012). Moreover, the CrowdFlower samples have gender imbalances: between 53 and 81 percent are males. Since these samples are not representative of the respective populations, inferences about average levels of attitudes or relationships between factors and voting intentions should be made with caution. Nevertheless, convenience samples (especially with college students), are common in psychological scale development (Shen et al. 2011), with reason. Such exercises are not interested in accurate proportions of a certain trait in the population, or on base-rate differences among groups (Ellsworth and Gonzalez 2007). We are particularly interested, for instance, on whether individuals give similar responses to items designed to tap into the same construct; whether there are important cross-cultural variations in the patterns of responses; and how two psychological attitudes are related to one another. For these kinds of tests, there is no reason why the lack of representativeness in these samples could bias inferences (see Ellsworth and Gonzalez 2007; Pernice et al. 2008). We do not expect that two items measuring populist attitudes would have correlated responses among men but not women. On practical grounds, the populist attitudes scales compared here have sixty-five unique items, amounting to ten minutes of survey time. Gathering such data with large representative samples from nine countries, for the sole purpose of psychometric testing, would be prohibitively expensive and a poor use of scarce resources.

Psychometric Properties

We evaluate three main psychometric properties in each scale: its internal coherence, the cross-cultural validity, and the breadth of the concept each one captures. The first test is done with confirmatory factor analysis (CFA), where we check whether the items in each scale load onto the dimension(s) they are theorized to. We proceed with a measurement invariance test to evaluate cross-national validity. Finally, we use a graded ratings scale model to produce information curves telling us how well these scales discriminate among individuals on all levels of the latent traits.

Internal Coherence

We start by asking whether each scale actually measures the latent construct(s) it was designed for. We apply CFA to the pooled data, separately for each scale. Results are in Table 1. In this table, we report both results for the scales as they are originally proposed and used in the reference texts, and also dropping the worst working indicator from each. It is common in practical applications that, if the measurement model identifies a single poorly working indicator, it is dropped from subsequent analyses. Therefore, to give a fair assessment to all, we take that into consideration.

We look at two main points of information: first, whether the model fits the data, and second, how high are factor loadings. Model fit tells us whether the estimation of a covariance structure based on measurement model parameters leads to a close reproduction of the observed covariance matrix. There can be various causes of poor fit, but all reflect a poorly functioning scale. Two common examples are that there are more, or fewer, dimensions than those modeled, or that the residuals of indicators have high correlations with one another, implying that there is another factor, unaccounted for, which influences measurement error for two or more items. In the tests here, the \(\chi^2 \) test of model fit is significant for all, what is not unexpected given the large pooled sample (Kline 2016). However, other than that, only the scale by Schulz et al. (2018) has good fit on all fit indices. Akkerman, Mudde, and Zaslove (2014) and Castanho Silva et al. (2018) come in a close second: both have root mean square error of approximation (RMSEA) at .057, a bit above the maximum recommended .05, but have good fit on all other fit statistics. When dropping their worst indicators, RMSEA actually increases for both Akkerman, Mudde, and Zaslove (2014) and
Castanho Silva et al. (2018), but fit remains good on other indices. Of the other scales, in their original forms, none has comparative fit index (CFI) or Tucker–Lewis index (TLI) above the recommended minimums of .950 and .900, respectively, and only Oliver and Rahn (2016) has standardized root-mean-square residual (SRMR) and RMSEA indicating good fit. When dropping their worst indicator, the CSES and Elchardus and Spruyt (2016) scales have good fit on all indicators except RMSEA, while Oliver and Rahn (2016) continue to have poor CFI and TLI, and Stanley (2011) remains with bad fit across the board.

Schulz et al. (2018) has the highest average loadings, at .655 on its original formulation, followed by Akkerman, Mudde, and Zaslove (2014) with .608 and Castanho Silva et al. (2018) and CSES with .513 and .512. We observe that several scales have at least one item with very low loading: the minimum factor loading for the original scales by Oliver and Rahn (2016), Elchardus and Spruyt (2016), Stanley (2011), and the CSES are below .15. Moreover, three scales in the original formulation have average factor loadings below .50, a rule-of-thumb value indicating low loadings in CFA: Elchardus and Spruyt (2016), Oliver and Rahn (2016), and Stanley (2011). If we drop the poorest working item from each, Elchardus and Spruyt (2016) and the CSES are those that improve the most, getting high average loadings (.583 and .606) and no poorly performing item. Oliver and Rahn (2016) and Stanley (2011) still have at least one bad item, and an average below .50. Akkerman, Mudde, and Zaslove (2014); Castanho Silva et al. (2018); and Schulz et al. (2018) continue to perform well.

Based on an initial CFA assessment, the only three scales that can be recommended in their original formulation are Akkerman, Mudde, and Zaslove (2014); Schulz et al. (2018); and Castanho Silva et al. (2018). They have good fit on (almost) all fit indices, no item with a poor performance, and relatively high average loadings. Others have at least one problematic item in capturing the construct they were designed to measure. If one drops the poorest working items from Elchardus and Spruyt (2016) and the CSES, those are also to be recommended in this respect.

Cross-National Validity

Due to various reasons, measurement instruments can work differently in different groups of individuals. The property that a measurement instrument (e.g., a survey questionnaire) measures the same thing, the same way, across different groups, is called measurement invariance. Instruments that fail these tests are called noninvariant. Formally, on a Likert-scale type of responses, measurement invariance means that the probability that an individual i from group k, with a level θ on the latent construct, would give answer y is the same as the general probability that any individual would give an answer y (Millsap 2011), or

<table>
<thead>
<tr>
<th>Scale</th>
<th>RMSEA</th>
<th>SRMR</th>
<th>CFI</th>
<th>TLI</th>
<th>Average loading</th>
<th>Minimum loading</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original scales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Akkerman, Mudde, and Zaslove (2014)</td>
<td>.057</td>
<td>.023</td>
<td>.974</td>
<td>.956</td>
<td>.608</td>
<td>.444</td>
</tr>
<tr>
<td>CSES</td>
<td>.097</td>
<td>.054</td>
<td>.903</td>
<td>.854</td>
<td>.512</td>
<td>.084</td>
</tr>
<tr>
<td>Oliver and Rahn (2016)</td>
<td>.050</td>
<td>.042</td>
<td>.882</td>
<td>.847</td>
<td>.448</td>
<td>.052</td>
</tr>
<tr>
<td>Elchardus and Spruyt (2016)</td>
<td>.214</td>
<td>.070</td>
<td>.809</td>
<td>.426</td>
<td>.485</td>
<td>.130</td>
</tr>
<tr>
<td>Schulz et al. (2018)</td>
<td>.033</td>
<td>.022</td>
<td>.986</td>
<td>.978</td>
<td>.655</td>
<td>.504</td>
</tr>
<tr>
<td>Stanley (2011)</td>
<td>.104</td>
<td>.065</td>
<td>.673</td>
<td>.492</td>
<td>.296</td>
<td>.009</td>
</tr>
<tr>
<td>Castanho Silva et al. (2018)</td>
<td>.057</td>
<td>.037</td>
<td>.956</td>
<td>.927</td>
<td>.513</td>
<td>.275</td>
</tr>
</tbody>
</table>

CFA dropping the worst indicator for each scale						
Akkerman, Mudde, and Zaslove (2014)	.068	.023	.975	.950	.602	.525
CSES	.077	.033	.958	.931	.583	.447
Oliver and Rahn (2016)	.045	.037	.919	.891	.485	.262
Elchardus and Spruyt (2016)	.071	.028	.987	.960	.606	.462
Schulz et al. (2018)	.035	.022	.987	.979	.669	.503
Stanley (2011)	.105	.059	.752	.566	.337	.102
Castanho Silva et al. (2018)	.064	.036	.959	.924	.539	.381

RMSEA = root mean square error of approximation; SRMR = standardized root-mean-square residual; CFI = comparative fit index; TLI = Tucker–Lewis index; CSES = Comparative Study of Electoral Systems; CFA = confirmatory factor analysis.

*Three-dimensional scale. CFA model with three latent variables.

Second-order confirmatory factor analysis model.

Includes a method factor for positive-worded items.

An equality constrain was imposed on two factor loadings for the model to be overidentified.
Invariance is an especially important characteristic when scales are used in cross-national surveys. If the measurement instruments are noninvariant, regression estimates that ignore this issue are not reliable: it is not possible to know whether differences between countries, for example, are actual differences in the construct or simply an artifact of differing response styles across the two cultures, let alone different understandings of the whole concept. Two kinds of invariance are most often tested: metric and scalar. Metric invariance is less demanding, and indicates that factor loadings are invariant across countries. It means that a change of one unit in an individual’s level of the latent variable produces the same change in the observed response regardless of group membership. Scalar invariance goes a step further, and tests whether both factor loadings and indicators’ intercepts are invariant across groups (Davidov et al. 2014). In this case, two individuals with the same level of the latent construct will give the exact same answer to a question, regardless of group membership. Metric invariance is less demanding, and indicates that factor loadings are invariant across countries. It means that a change of one unit in an individual’s level of the latent variable produces the same change in the observed response regardless of group membership. Scalar invariance goes a step further, and tests whether both factor loadings and indicators’ intercepts are invariant across groups (Davidov et al. 2014). In this case, two individuals with the same level of the latent construct will give the exact same answer to a question, regardless of group membership. Metric invariance is often accepted as enough because, if achieved, it does not bias regression estimates. However, one cannot compare group means (say, one country has a more populist electorate than the other) unless scalar invariance is achieved on the instrument.

We test measurement invariance using multiple group CFA (Jöreskog 1971). It consists in first fitting, for each scale, a so-called “configural model”: in essence, one CFA model is fit to each group (in this case countries), each with their own factor loadings, intercepts, covariance structures, and so on. Next, a more constrained model is fit, where factor loadings are forced to be the same across groups. For example, the loading of indicator Y_1 on the latent variable “populism” is forced to be the same for all countries. If that indicator works the same way across countries in measuring the latent construct, then its loading should be similar across groups anyway, and forcing it to be exactly the same would not make the model significantly worse.

Differences in models are assessed with the χ^2 test of model difference. Each model has a χ^2 statistic that indicates how well it fits the data. The difference in χ^2s between two nested models is χ^2-distributed, with degrees of freedom equal to the difference in the number of estimated parameters. If the more constrained model fits significantly worse than the configural, it means the measurement is noninvariant: there is variation in how the items or scale works across countries. However, if the constrained model does not have a significantly worse fit, the scale is invariant, meaning that the indicators capture the latent variable in a similar way across countries. Table 2 has the result of invariance tests for all scales. Only two have invariant factor loadings across all countries: Elchardus and Spruyt (2016) and Castanho Silva et al. (2018). The first, however, had bad fit in the pooled data to begin with, so the fact that it is invariant simply indicates it works equally poorly across countries. All other batteries do not capture the latent construct of populism in comparable ways across the groups. This means that one cannot compare regression coefficients from models using these scales in samples from different countries. Moreover, no scale, including Elchardus and Spruyt (2016) and Castanho Silva et al. (2018), achieves scalar invariance—where intercepts are equal. As a consequence, we cannot say that average levels of populism are the same (or not) across different countries, as suggested by Rico and Anduiza (2017).

Information Curves

A further psychometric property that researchers can apply to test their scales comes from a different paradigm, IRT. We are interested in knowing how much of the latent construct of populism each scale is able to capture. IRT was first developed to assess educational tests, and evaluate the difficulty of individual items. It considers that a good test, able to discriminate among pupils’ quality, should include both easy items—that most get

Table 2. Mutigroup Confirmatory Factor Analysis Test of Measurement Invariance.

<table>
<thead>
<tr>
<th>Scale</th>
<th>χ^2 Configural</th>
<th>χ^2 Loadings</th>
<th>χ^2 diff. (df)</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akkerman, Mudde, and Zaslove (2014)</td>
<td>230.76</td>
<td>297.15</td>
<td>59.935 (40)</td>
<td>.022</td>
</tr>
<tr>
<td>CSES</td>
<td>462.03</td>
<td>570.89</td>
<td>89.458 (48)</td>
<td><.001</td>
</tr>
<tr>
<td>Oliver and Rahn (2016)</td>
<td>942.62</td>
<td>1176.99</td>
<td>234.37 (72)</td>
<td><.001</td>
</tr>
<tr>
<td>Elchardus and Spruyt (2016)</td>
<td>229.16</td>
<td>254.76</td>
<td>20.458 (24)</td>
<td>.648</td>
</tr>
<tr>
<td>Schulz et al. (2018)</td>
<td>360.48</td>
<td>496.06</td>
<td>116.64 (64)</td>
<td><.001</td>
</tr>
<tr>
<td>Stanley (2011)</td>
<td>629.81</td>
<td>809.27</td>
<td>131.05 (64)</td>
<td><.001</td>
</tr>
<tr>
<td>Castanho Silva et al. (2018)</td>
<td>440.58</td>
<td>599.12</td>
<td>102.40 (88)</td>
<td>.145</td>
</tr>
</tbody>
</table>

CSES = Comparative Study of Electoral Systems.
right—and difficult ones, that only a few students get right. This way, it is possible to tell good from bad students. Translated into survey design, it means that items should be polarizing: some will only receive agreement from highly populist or highly nonpopulist individuals. An information curve has the range of the latent construct on the x-axis, and the amount of information on Y that the scale can capture. Ideally, one should see distributions close to uniform, so that the scale works well at all points of the latent construct. Narrower distributions indicate that the scale only discriminates well respondents within a given range of the latent construct (say, moderately populist people) but might fail to identify those very high (or very low) on it. We use a graded rating scales model (Muraki 1992) in all scales except for Oliver and Rahn (2016), for which we apply a graded response model (Samejima 1968), since response categories vary across items. We apply the models to the pooled data, given the large sample-size requirements for IRT estimation.

Figure 1 shows information curves for the four unidimensional scales: Akkerman, Mudde, and Zaslove (2014); Elchardus and Spruyt (2016); Stanley (2011); and the CSES. The solid lines are the information curve, while the dashed lines are the standard errors (inverse of the information). Higher values in the dashed line mean that the scale, at that point in Θ, has higher uncertainty in capturing the latent construct—or, conversely, gives less information. The x-axis is standardized with a mean of 0. Higher values represent higher levels of populism, while lower values, toward the limit of -6, represent lower levels of the construct.

Figure 1. Information and SE curves—Unidimensional scales. CSES = Comparative Study of Electoral Systems.
We confirm findings by Van Hauwaert et al. (2018) that the eight-item scale by Stanley (2011) is that with the broadest information curve. It is able to discriminate populist attitudes for a range between \([-4,2]\), underperforming only at the extreme high end of the scale. Others, however, have high information only around the center, in ranges between \([-3,1]\), meaning they are better equipped to identify moderately nonpopulist and populist individuals, but not strongly populist ones. Figure 2 shows the information curves for each dimension of the three-dimensional scales by Castanho Silva et al. (2018), Schulz et al. (2018), and Oliver and Rahn (2016). In the latter, we see that one subdimension has little information: national affiliation. There’s a peak around the center, and the scale captures very little even for those moderately above or below the center. The other two dimensions not only fare better but also concentrate around the \([-3,1]\] and \([-2,2]\) ranges. For Schulz et al. (2018), we observe that all three dimensions capture somewhat similar ranges of their respective constructs around the center: somewhere between \([-3,1]\) or \([-2,2]\).

If the covariance of those three makes up populism, this means that the scale is also unable to discriminate better toward the extremes. That by Castanho Silva et al. (2018), on the other hand, has one dimension that works better at the higher end: Manichaean outlook, in which the peak of the information curve is between \([-1,3]\). The other two dimensions, however, have the same limitations of other scales and work better on the center and the moderately low ranges.

Discussion of Psychometric Properties

Taken together, these tests give important insights into various components in the working of attitudinal scales. Factor analysis inform us about the most basic property a scale needs: does it measure (well) what it is supposed to measure? However, two additional tests give more extensive insights: an invariance tells us if the batteries have cross-national validity. Most populist attitudes scales failed this test in these data. Last, information curves tell us whether the scale works better for some
respondents, depending on how much they have of the underlying construct we are measuring. Ideally, scales should have high information across the board. The reality, in this case, is that most are better able to distinguish moderately populist individuals from moderately nonpopulist ones than moderates from strong populists/nonpopulists. Based on their psychometric properties alone, none of the scales has an exemplary performance on all tests. The better working ones, even if with some shortcomings, appear to be Akkerman, Mudde, and Zaslove (2014); Castanho Silva et al. (2018); and Schulz et al. (2018).

The psychometric tests performed here are not expected to be strongly affected by the nonrepresentative samples used. Factor analysis and information curves are built on the amount of correlation in answers to items that form one construct. There is no theoretical reason to expect that the structure of correlations between items would be very different within the groups in these samples than they are in the general population. Otherwise, all of these scales would be in serious trouble: they would lack not only cross-country measurement invariance but also within-country, across-groups measurement invariance. For example, Pérez and Hetherington (2014) use invariance tests to find that the child-rearing authoritarianism scale (Feldman and Stenner 1997) is understood differently by blacks and whites in the United States. As a consequence, analyses that do not take this into account produce biased estimates even if ran on a representative sample within the country. If the populist attitudes scales perform differently in measurement models with convenience samples, in relation to representative ones, because of different correlation structures in groups over-represented within the countries tested, then no regression estimates using these scales that has been published in the existing literature can be trusted if they do not control for noninvariance.

Construct Validity

A proper assessment of a scale needs to take into account whether it displays external validity. They are designed to measure constructs that have been developed theoretically, and for which there are known correlates. The question is, therefore, if a scale works at predicting something that the given concept would most certainly predict. We test external validity of populist attitudes with three variables: political trust, belief in conspiracies, and identification with populist parties. While Ellsworth and Gonzalez (2007) and Pernice et al. (2008) claim that nonrepresentative samples should not bias estimates of correlations between two psychological constructs, we refrain from making any inferences in this section. Our goal is pre-testing survey items. If they are to have minimal external validity, we expect populist attitudes to be associated with a few of its known strong correlates in any kind of sample. We do not claim, however, that the strength of associations we find should be taken as indicative for population values.

Populist Correlates

We start by testing how each scale is correlated with two known correlates of populist attitudes and voting preferences: political trust (Rooduijn, van der Brug, and Lange 2016), and conspiratorial mentality (Castanho Silva, Vegetti, and Littvay 2017). Conspiracy mentality is measured with the five-item scale by Bruder et al. (2013), while political trust is measured with a question on how much confidence the respondent has in three institutions: government, parliament, and political parties. Higher values indicate more confidence. They are both modeled as latent variables. We fit one model for each of the scales tested, with results in Table 3.

<table>
<thead>
<tr>
<th>Scale</th>
<th>Political trust (r)</th>
<th>Conspiracy (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akkerman, Mudde, and Zaslove (2014)</td>
<td>-.34</td>
<td>.53</td>
</tr>
<tr>
<td>CSES</td>
<td>-.44</td>
<td>.56</td>
</tr>
<tr>
<td>Elchardus and Spruyt (2016)</td>
<td>-.32</td>
<td>.50</td>
</tr>
<tr>
<td>Schulz et al. (2018)</td>
<td>-.32</td>
<td>.57</td>
</tr>
<tr>
<td>Stanley (2011)</td>
<td>-.11</td>
<td>.33</td>
</tr>
<tr>
<td>Castanho Silva et al. (2018)—Aggregate</td>
<td>-.14</td>
<td>.12</td>
</tr>
<tr>
<td>Castanho Silva et al. (2018)—Anti-elitism</td>
<td>-.51</td>
<td>.31</td>
</tr>
<tr>
<td>Castanho Silva et al. (2018)—People-centrism</td>
<td>-.34</td>
<td>.23</td>
</tr>
<tr>
<td>Castanho Silva et al. (2018)—Manichaean outlook</td>
<td>.11</td>
<td>-.16</td>
</tr>
<tr>
<td>Oliver and Rahn (2016)—Anti-elitism</td>
<td>-.31</td>
<td>.53</td>
</tr>
<tr>
<td>Oliver and Rahn (2016)—Mistrust experts</td>
<td>-.08</td>
<td>.37</td>
</tr>
<tr>
<td>Oliver and Rahn (2016)—National affiliation</td>
<td>.11</td>
<td>.11</td>
</tr>
</tbody>
</table>

CSES = Comparative Study of Electoral Systems.
Most scales have a moderate negative correlation with political trust—between .30 and .50—and stronger with conspiracy mentality. The exceptions are the aggregate version of Castanho Silva et al. (2018), driven mostly by its Manichean outlook dimension; Stanley (2011); and the national affiliation and mistrust of experts dimensions from Oliver and Rahn (2016). The fact that the anti-elitism batteries of both Oliver and Rahn (2016) and Castanho Silva et al. (2018) have similar behavior to other populist attitudes scales suggest that the latter might be capturing little more than anti-establishment sentiments.

This is confirmed by results in Figure 3, which contains the correlation matrix between all scales and their subdimensions. First of all, we observe high correlations (r > .8) between Akkerman, Mudde, and Zaslove (2014) and two scales that share at least one item from it: Schulz et al. (2018) and the CSES. Interestingly, Elchardus and Spruyt (2016) also strongly correlated with those three, even though there are no common items, while Stanley (2011), upon which those scales also build, is correlated with them with at least r > .6.

It is important to notice, however, how these perform once compared with the disaggregated versions of multidimensional scales: Akkerman, Mudde, and Zaslove (2014); Schulz et al. (2018); Elchardus and Spruyt (2016); and the CSES battery have all r > .8 correlations with the anti-elitism dimension from Oliver and Rahn (2016), and at least r > .6 with the anti-elitism dimension in Castanho Silva et al. (2018). These scales seem to be failing to capture more than mere anti-elitism (in fairness, the CSES battery is referred to as “attitudes about elites” in the questionnaire). The lowest r’s are with those subdimensions that expand on a general anti-elitism: national affiliation, in Oliver and Rahn (2016), and Manichean outlook, from Castanho Silva et al. (2018), as well as the multifaceted scale by Stanley (2011).

Party Identification

A few countries in our study had relevant populist parties at the time of data collection. The parties are Front National and Parti de Gauche in France, Five Star Movement, Lega Nord and Forza Italia in Italy,
SYRIZA and ANEL in Greece, Podemos in Spain, UKIP in the United Kingdom, and MORENA in Mexico. While these samples are far from nationally representative, they give us at least some insight into whether and how the scales might work in predicting partisanship with populists. We test whether higher levels of populist attitudes predict higher probability of voting for populist parties over nonpopulist ones. Since partisanship represents a deeply rooted affection between individuals and parties (Campbell et al. 1960) and includes the potential exposure to political communication (Zaller 1992), party identification is preferred over voting behavior, which can at times be nothing more than mere protest (Schumacher and Rooduijn 2013; Pop-Eleches 2010).

Figures 4 and 5 show the probability of supporting a populist party in each country across the various levels of the populist latent variables. As should be expected given their high correlation, Akkerman, Mudde, and Zaslove (2014); CSES; and Schulz et al. (2018) perform similarly: best in Italy, Spain, and France, and not so much in the other three. Castanho Silva et al. (2018) works well in Italy and Spain by reaching a high likelihood for respondents with strong populist attitudes, but it fails to do so in France to the same extent of the others. Stanley (2011) provides the only scale that reports a positive effect of populist attitudes on party identification in Greece, alongside Italy, France, and Spain. Finally, the scale of Elchardus and Spruyt (2016) fares rather bad, as overall propensities are comparatively low, with the exception of...
Italy. Of the three dimensions in Oliver and Rahn (2016), anti-elitism works similarly to other scales: well in Italy and Spain, and less so in other countries. However, mistrust of experts is associated with little variation in predicting populist identification in all countries, while national affiliation has a strong positive association in Italy, moderate in France and Greece, and a strong negative one in Spain. Finally, the failure of almost all instruments to predict support for populists in Greece is another strong indication that they are measuring little more than anti-establishment or anti-government feelings, given that Greece was the only country in this sample with populists in government during the data collection.

Conclusion

Table 4 summarizes our findings. The first column indicates how the scales load onto the dimension(s) they were proposed to. Only Akkerman, Mudde, and Zaslove (2014); Castanho Silva et al. (2018); and Schulz et al. (2018) presented good model fit and high factor loadings in this test, having, therefore, high internal coherence. Oliver and Rahn (2016) have mixed model fit but at least one indicator that works poorly, while the others have both poor fit and low factor loadings, or at least one poorly performing one. For CSES and Elchardus and Spruyt (2016), fit improves dramatically if one bad indicator is removed from the original scale.

Cross-national validity refers to measurement invariance. The only scales that have invariant factor loadings across countries are Castanho Silva et al. (2018) and Elchardus and Spruyt (2016)—the latter one, however, has poor internal validity and the invariant loadings simply indicate it works equally bad in all countries. Akkerman, Mudde, and Zaslove (2014) have a significant χ^2 test, though with a p value of .022, which is not such a large violation. All other scales have much worse fitting models once we constrain factor loadings to be the same across countries, implying low cross-national validity. Further research is certainly needed as it may well be that, with different samples and a different group of countries, some scales could be invariant which are noninvariant in the tests here, and vice versa. Conceptual breadth refers to information curves and the correlation matrices. None of the scales tested has broad information curves, capturing high levels of information all over the range of the dependent variable. Akkerman, Mudde, and Zaslove (2014); Stanley (2011); and Castanho Silva et al. (2018) are those that get the widest information curves. As their correlations with one another showed, only Castanho

Table 4. Summary of Findings.

<table>
<thead>
<tr>
<th>Scale</th>
<th>Internal coherence</th>
<th>Cross-national validity</th>
<th>Conceptual breadth</th>
<th>External validity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Akkerman, Mudde, and Zaslove (2014)</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
<td>High</td>
</tr>
<tr>
<td>CSES</td>
<td>Medium</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
</tr>
<tr>
<td>Oliver and Rahn (2016)</td>
<td>Medium</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Elchardus and Spruyt (2016)</td>
<td>Medium</td>
<td>Medium</td>
<td>Low</td>
<td>Low</td>
</tr>
<tr>
<td>Stanley (2011)</td>
<td>Low</td>
<td>Low</td>
<td>Medium</td>
<td>Medium</td>
</tr>
<tr>
<td>Schulz et al. (2018)</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Castanho Silva et al. (2018)</td>
<td>High</td>
<td>High</td>
<td>Medium</td>
<td>Medium</td>
</tr>
</tbody>
</table>

CSES = Comparative Study of Electoral Systems.
Silva et al. (2018), Stanley (2011), and Oliver and Rahn (2016) seem to capture more than mere anti-elitism.

Most scales fare similarly in external validity tests: they have moderate or high correlations with known populist attitudes correlates: low political trust and belief in conspiracies, and good at predicting populist party identification in at least two of three countries: Italy, France, and Spain. This is important, since it means they work both with left- (Podemos, Left Front) and right-wing populists (National Front, Berlusconi), not being ideologically skewed to one side or the other.

The nature of our data (online convenience samples with relatively small \(n \) in each country) is undoubtedly far from ideal to make inferences about populations. However, it allows to pursue the main goal of our analyses, namely, to test the psychometric properties of various instruments in an efficient way. Using convenience samples to test large numbers of survey items is a standard practice in social and clinical psychology, for constructs as varied as social dominance orientation (Pratto et al. 1994), social phobia (Mattick and Clarke 1998), and clinical depression and anxiety (e.g., Watson et al. 2007), after which a much smaller number of questions is administered in representative samples to measure the prevalence of such traits in the population. It is important to emphasize that the issue at hand is not if it is better to pre-test scales on representative, convenience, or student samples. The status quo in political science is still an almost complete absence of pre-tests. At the same time, allocating scarce resources (money, survey space) for such a test on representative samples is wasteful. While acknowledging the limitations of this study, we are convinced that it goes beyond the state of the art, and offers a reasonable recipe for future scale development in political science. It puts forth a blueprint of how to empirically evaluate the quality of political attitudes scales in an affordable way.

While researchers have made several efforts at developing scales to measure populist attitudes in recent years, up to now, most of the information available to make a decision between one or another would be theoretical considerations and the reporting of how well these scales performed in the papers that first proposed them. Our analyses, directly contrasting one to the other, show that they must be used with care. Several batteries of items or questions appear to have poor psychometric properties, or fail at capturing the proposed construct. Moreover, most seem to have limited cross-cultural validity. Given how such batteries are starting to be part of large-scale cross-national surveys, that is a source of concern. Castanho Silva et al. (2018) presents decent performance in all psychometric properties analyzed here but fails to predict populist party support in comparison with the others, which is an important drawback. Akkerman, Mudde, and Zaslove (2014) and Schulz et al. (2018) have an acceptable or good performance on almost all tests but fail on cross-national validity in this sample. Considering that Akkerman, Mudde, and Zaslove (2014) is the most used option today, that is a slight relief. However, the lack of (1) negative-worded items, (2) multidimensionality, and (3) conceptual breadth at capturing more than anti-elitism makes us refrain from fully recommending their application in multicountry studies. As a last note, we must also highlight that while in this paper we focus on empirical tests, the selection of a scale should also be dictated by theory, and which one has items that better reflect the concept one is interested in measuring.

Declaration of Conflicting Interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The data collection has been funded by the Central European University’s Research Support Scheme grant number OTHERPOL0711.

Notes
1. The full list of items can be found in the supplementary materials. There are sixty-five unique statements, all measured with disagree-agree Likert-type responses, except for three in the battery by Oliver and Rahn (2016).
2. We do not have an exhaustive list of populism scales. We have not included Rooduijn (2014), which uses only questions on respondents’ opinions about politicians as a proxy measure of populism (e.g., “Politicians are profiteers”). Older scales, such as Axelrod (1967) or Farrell and Laughlin (1976), have specific policy items that are not resonant with contemporary political discourse (e.g., the government should fire suspected communists). After our data were collected (the questionnaire was finalized in September 2016), two new ones were published: Van Hauwaert and Van Kessel (2018) and Hameleers et al. (2017). Nevertheless, both are based on Akkerman, Mudde, and Zaslove (2014), which we include.
3. An example of an item capturing more than one populism dimension in Akkerman, Mudde, and Zaslove (2014) is, “The political differences between the elite and the people are larger than the differences among the people.” It taps both into the idea of homogeneity of the people and of its distance to the elite. An example of an item tapping into a single dimension, in this case “popular sovereignty,” is “The people should be asked whenever important decisions are taken” Schulz et al. (2018).
4. For example, Akkerman, Mudde, and Zaslove (2014, 1332): we use here only the final list of six they ended up with, instead of the original eight from the beginning of their study.
5. These data were also used by Castanho Silva et al. (2018) in the final part of the development of their scale.
6. Now called “figure eight.”
7. The Irish sample was complemented with hundred respondents from a Qualtrics panel. We collected CrowdFlower, complemented with Qualtrics, data for Hungary as well. However, there were several concerns about data quality for this sample: large proportion of respondents who powered through without giving almost any answers, and very short completion times. For this reason, we do not include Hungary in the analysis.
8. Stanley (2011) does not aggregate the indicators in his analyses, using all eight items separately as independent variables in regression models. However, since they are constructed to represent the various dimensions of the concept of populism, we create a unidimensional factor from the eight. The estimation of a four-factor model for this scale, with two indicators each, fails to converge, and for this reason, we stick with a unidimensional one. We also add the method factor for positive worded items since the model would not converge without it. We also use a method factor for positive items for Castanho Silva et al. (2018), used by the authors, following the recommendation by DiStefano and Motl (2006) when a few items have a different wording style or response scale than others.
9. Full results in the supplementary materials.
11. From the Comparative Study of Electoral Systems (CSES), the poorly working item is, “Having a strong leader in government is good for [COUNTRY] even if the leader bends the rules to get things done”; from Oliver and Rahn (2016), it is “Ordinary people can really use the help of experts to understand complicated things like science and health.” From Elchardus and Spruyt (2016), “People who have studied for a long time and have many diplomas do not really know what makes the world go round,” and from Stanley (2011), “Ordinary people are unable to make the correct decisions about the future of our country.”
12. The two most common ways of accounting for clustering used today, clustering standard errors and multilevel modeling, only correct for clustering of regression estimates, but still assume measurement invariance across groups. The exception, when it comes to factor loadings, is multilevel structural equation models with random factor loadings (Asparouhov and Muthén 2015).
13. The more restricted model (loadings) is considered “nested” within the configural model. It means that one can arrive at the more restricted one by imposing no more than equality constraints on the less restrictive.
14. For this figure, we ran two-factor confirmatory factor analysis (CFA) models with each pair of scales. The correlations presented are those estimated between the two latent variables in each CFA model.

Supplemental Material
Supplemental materials for this article are available with the manuscript on the Political Research Quarterly (PRQ) website.

ORCID iD
Bruno Castanho Silva https://orcid.org/0000-0001-9363-4704

References

